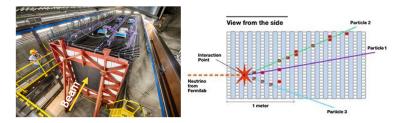


Progress of the Charged Pion Semi-Inclusive Neutrino Charged-Current Cross Section in NOvA

Jyoti Tripathi

Panjab University, India Fermilab On behalf of NOvA Collaboration

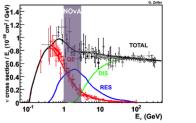

New Perspectives

Fermilab

June 5-6, 2017

The NOvA Experiment

- NOvA is an off-axis neutrino oscillation experiment, looking for ν_{μ} to ν_{e} oscillations.
- NOvA uses the NuMI beam and has two functionally identical detectors, with a long baseline of 810 km.


 ND placed 105 m underground, placed close to neutrino production target, has intense rate of neutrino interactions, providing a great opportunity to study neutrino-nucleus interactions.

Charged Pion production in u_{μ} CC interactions

• Charged pion production in ν_{μ} CC interactions.

$$\nu_{\mu}$$
 + N $\rightarrow \mu^{\mp}$ + N + π^{\pm} + X

a single charged pion produced could make the event mimic the CCQE topology.

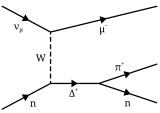


Fig. Summary of the current knowledge of ν_μ charged-current cross sections (Plot courtesy of G. Zeller) and Feynmann diagram for ν_μ CC resonant single pion production, the dominant channel for pion production.

Cross Section measurements

• Aiming to measure differential cross section of ν_{μ} CC interactions with at-least one pion with respect to muon kinematics.

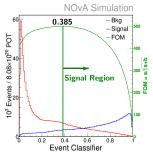
$$\frac{d\sigma_{\nu}}{dX_{i}} = \frac{\sum_{j} U_{ij} (N_{j} - N_{j}^{bkg})}{\varepsilon_{i} \Delta X_{i} \Phi_{\nu} T}$$

where i, j index of true and reconstructed bin respectively.

 U_{ij} - unfolding function, calculating the contribution of reconstructed bin to true bin

 ΔX_i - width of bin i, Φ_{ν} - integrated flux

 ε_i - selection efficiency


 N_j and N_i^{bkg} - number of selected and background events respectively

T - number of nucleons in the fiducial volume

- Showing Monte Carlo based study
- POT exposure corresponds to 8.08e20.

Signal Selection

- Event Selection
 - Quality (interactions triggering atleast 20 hits), containment cut and muon identification - best tracks for the muons.
 - Applied as Pre-Selections.
- Signal Selection CVN(Convolutional Visual Network)
 - Uses full near detector raw data image as an input.
 - ▶ Trains CC events with at-least one charged pion in the final state.

Optimized on $\frac{s}{\sqrt{s+b}}$, gives maximum figure of merit at 0.385.

Signal Selection

- A ν_{μ} CC interaction having one muon and at-least one charged pion in the final state.
- Events with CVN-Pi > 0.385 are selected as candidate ν_{μ} CC events with atleast one charged pion.

Selection Cuts	Selected	Signal	Efficiency	Purity	NC	CC 0pi	Others
			(%)	(%)	(%)	(%)	(%)
Preselections	2,693,750	1,051,800	_	39.05	1.65	56.15	3.16
${ m CVN-Pi} > 0.385$	580,246	380,890	36.21	65.64	1.33	30.86	2.18

Simulated NOvA Event with EventID > 0.9

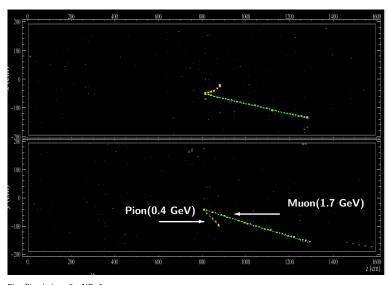
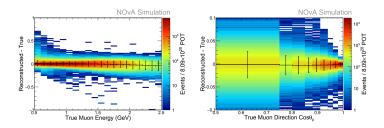
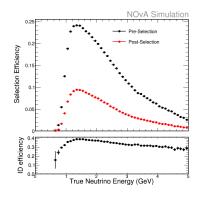
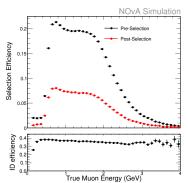



Fig. Simulation of a NOvA event

Resolution for Muon Energy and Angle

The markers show a mean fit value, and the error bands show sigma from a gaussian fit.

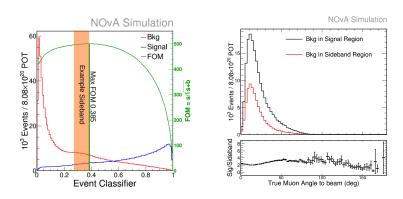

 The predicted resolution for both muon energy and angle are promising, provide us with an opportunity to perform differential cross section measurements.


Efficiency Studies

$$\frac{d\sigma_{\nu}}{dX_{i}} = \frac{\sum_{j} U_{ij} (N_{j} - N_{j}^{bkg})}{\varepsilon_{i} \Delta X_{i} \Phi_{\nu} T}$$

$$\varepsilon_i = \frac{N_{\text{selected}}}{N_{\text{total}}}$$

 $N_{selected}$ - Number of selected signal events N_{Total} - Total number of signal events generated


- The total efficiency of the event selection is few percent.
- PID does not restrict the available truth space.

Background Estimation

$$\frac{d\sigma_{\nu}}{dX_{i}} = \frac{\sum_{j} U_{ij}(N_{j} - N_{j}^{bkg})}{\varepsilon_{i}\Delta X_{i}\Phi_{\nu}T}$$

- Constrain background N_j using sideband region close to the signal but low predicted signal count.
- This data driven technique can produce weights by fitting the background components in the sideband.
- Can help correct the MC background events in the signal region
- Tried an example sideband region 0.275 < 0.385

Sideband Studies

- Sideband region covers the phase space in the signal region.
- Trying with fitting of different observables.

Future Plans

- The study of backgrounds in the sideband region is underway.
- Looking at the possible avenues to improve the event selection efficiency.
- Start with systematics, after the sideband and efficiency studies.
- Interesting measurement, could help disentangle the nuclear effects in neutrino-nucleus interactions.